

FDP19N40 N-Channel MOSFET 400V, 19A, 0.24Ω

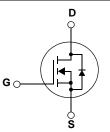
Features

- $R_{DS(on)} = 0.2\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 9.5A$
- Low Gate Charge (Typ. 32nC)
- Low C_{rss} (Typ. 20pF)
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS Compliant

TO-220

FDP Series

February 2012 UniFETTM


tm

FDP19N40 N-Channel MOSFET

Description

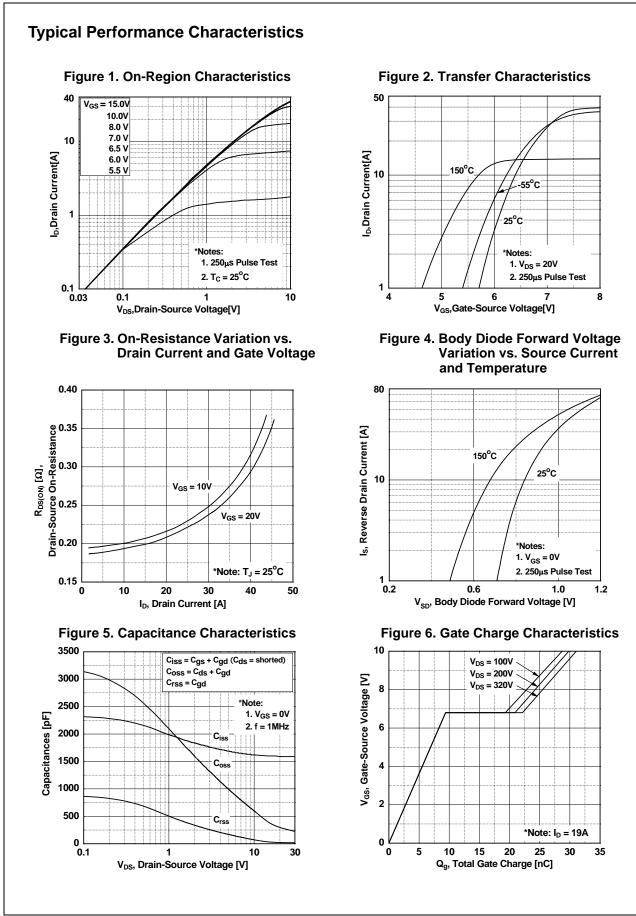
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

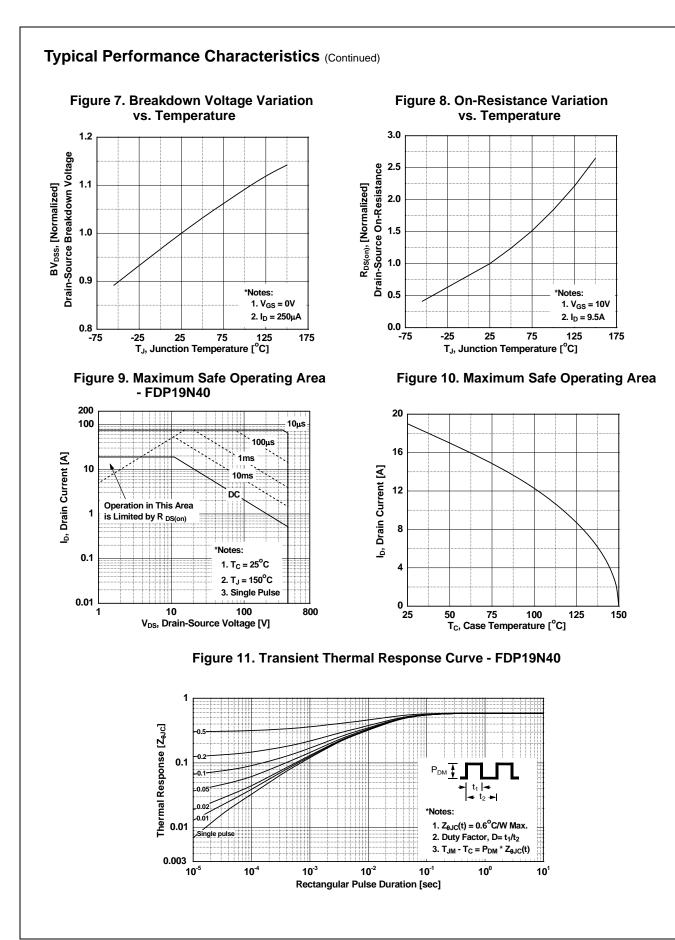
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pluse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power suppliesand active power factor correction.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

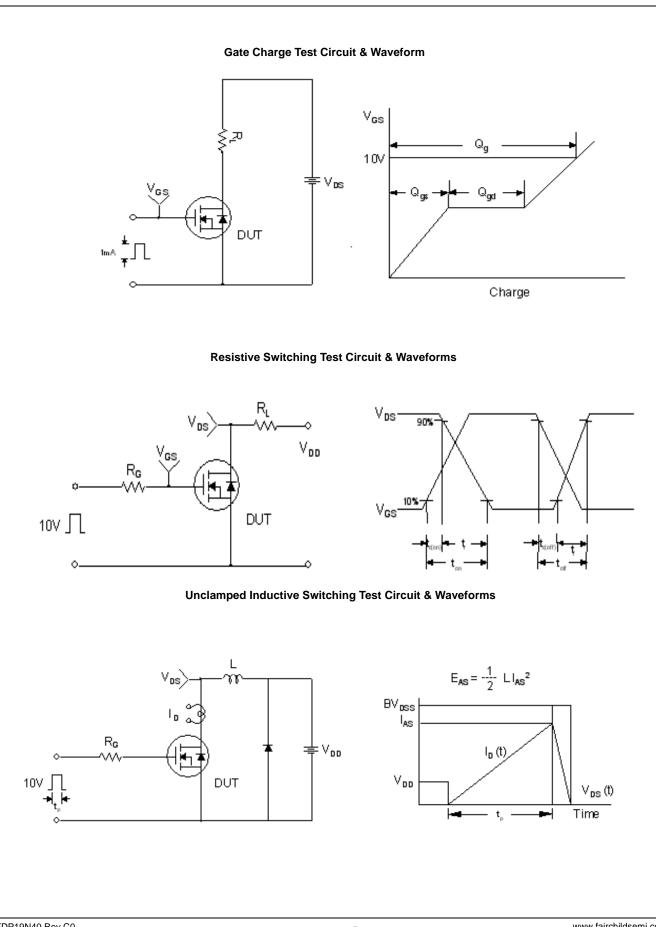
GDS

Symbol		Parameter		FDP19N40	Units	
V _{DSS}	Drain to Source Voltage			400	V	
V _{GSS}	Gate to Source Voltage			±30	V	
I _D	Drain Current	-Continuous ($T_C = 25^{\circ}C$)		19	•	
		-Continuous (T _C = 100 ^o C)		11.4	Α	
I _{DM}	Drain Current	- Pulsed	(Note 1)	76	Α	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	542	mJ	
I _{AR}	Avalanche Current		(Note 1)	19	A	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	21.5	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	15	V/ns	
P _D	Deuron Dissingtion	$(T_{C} = 25^{\circ}C)$		215	W	
	Power Dissipation	- Derate above 25°C		1.65	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	
Drain current li	mited by maximum junction temperate	ıre				

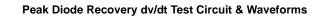

Drain current limited by maximum junction temperature

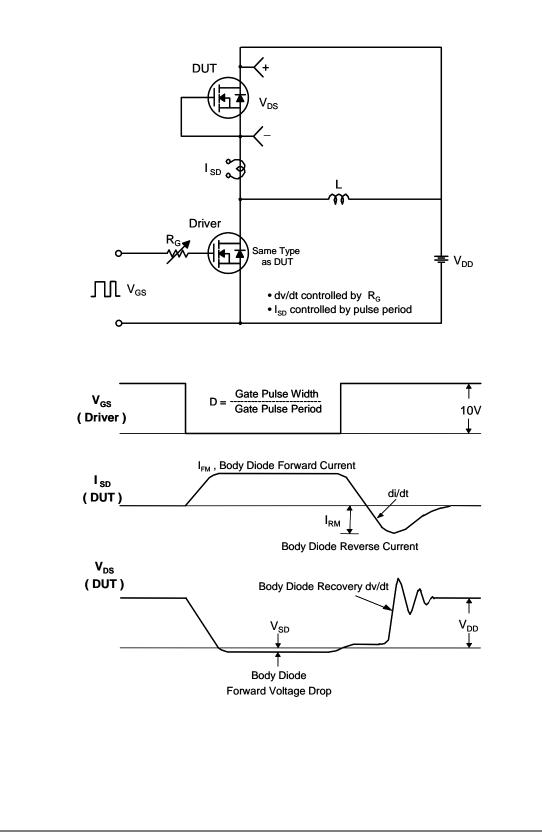

Thermal Characteristics

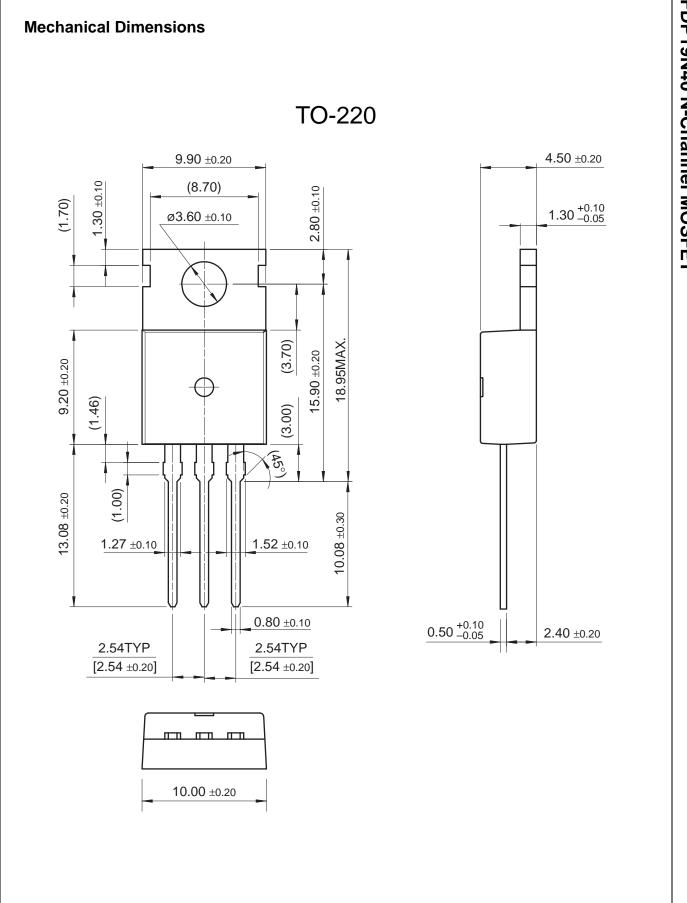
Symbol	Parameter	FDP19N40	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.6	
$R_{\theta CS}$	Thermal Resistance, Case to Sink Typ.	0.5	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	62.5	


Ď
<u> </u>
9
Ζ
4
Ò
7
4
Ò
÷
ā
5
5
Ð
Σ
Ō
ŭ
¥
щ
<u> </u>

Device Marking FDP19N40		Device FDP19N40	Package TO-220		Reel Size	Тар	e Width		Quantity 50	
Electrica	I Chara	acteristics								
Symbol	Parameter			Test Conditions		Min.	Тур.	Max.	Units	
Off Charac	teristics	5								
BV _{DSS}	Drain to Source Breakdown Voltage		In = 25	0μΑ, V _{GS} = 0V, Τ	1 = 25°C	400	-	-	V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$		wn Voltage Tempera	0		$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		-	0.5	-	V/°C
	7.00			V _{DS} =	400V, V _{GS} = 0V		-	-	1	
IDSS	Zero Ga	te Voltage Drain Curi	ent	-	$V_{\rm DS} = 320V, T_{\rm C} = 125^{\circ}{\rm C}$		-	-	10	μA
I _{GSS}	Gate to I	Body Leakage Curre	nt		±30V, V _{DS} = 0V		-	-	±100	nA
On Charac	teristics	<u> </u>					I			1
V _{GS(th)}		reshold Voltage		V _{GS} =	V _{DS} , I _D = 250μA		3.0	-	5.0	V
R _{DS(on)}		ain to Source On Re	sistance		10V, I _D = 9.5A		-	0.2	0.24	Ω
9FS	Forward	Transconductance			20V, I _D = 9.5A	(Note 4)	-	18.3	_	S
-		ristics pacitance					-	1590	2115	pF
C _{iss} C _{oss}	Input Ca Output C		 e		25V, V _{GS} = 0V Hz			1590 255 20	2115 340 29	pF pF pF
C _{iss} C _{oss} C _{rss}	Input Ca Output C Reverse	pacitance Capacitance	e				-	255	340	pF
C _{iss} C _{oss} C _{rss} Q _{g(tot)}	Input Ca Output C Reverse Total Gat	pacitance Capacitance Transfer Capacitanc	e	f = 1M	Hz 320V, I _D = 19A		- - - - -	255 20	340 29	pF pF
C_{iss} C_{oss} C_{rss} $Q_{g(tot)}$ Q_{gs}	Input Ca Output C Reverse Total Gat Gate to S	pacitance Capacitance Transfer Capacitanc te Charge at 10V		f = 1M	Hz 320V, I _D = 19A	(Note 4, 5)	- - - - - -	255 20 32	340 29	pF pF nC
C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd}	Input Ca Output C Reverse Total Gat Gate to S Gate to I	pacitance Capacitance Transfer Capacitanc te Charge at 10V Source Gate Charge Drain "Miller" Charge		f = 1M	Hz 320V, I _D = 19A	(Note 4, 5)	- - - - -	255 20 32 10	340 29 40 -	pF pF nC nC
C_{iss} C_{oss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching	Input Ca Output C Reverse Total Gat Gate to S Gate to I Charact	pacitance Capacitance Transfer Capacitanc te Charge at 10V Source Gate Charge Drain "Miller" Charge eristics		f = 1M	Hz 320V, I _D = 19A	(Note 4, 5)		255 20 32 10	340 29 40 -	pF pF nC nC
C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching	Input Ca Output C Reverse Total Gat Gate to S Gate to I Charact Turn-On	pacitance Capacitance Transfer Capacitanc te Charge at 10V Source Gate Charge Drain "Miller" Charge		$V_{DS} = V_{GS} =$	Hz 320V, I _D = 19A	(Note 4, 5)	- - - - - -	255 20 32 10 13	340 29 40 -	pF pF nC nC
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ Q_{g(tot)} \\ Q_{gs} \\ Q_{gd} \\ \end{array}$	Input Ca Output C Reverse Total Ga Gate to S Gate to I Charact Turn-On Turn-On	pacitance Capacitance Transfer Capacitanc te Charge at 10V Source Gate Charge Drain "Miller" Charge eristics Delay Time		$V_{DS} = V_{GS} =$	Hz 320V, I _D = 19A 10V 200V, I _D = 19A	(Note 4, 5)	- - - - - - - -	255 20 32 10 13 31	340 29 40 - -	pF pF nC nC nC
C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching	Input Ca Output C Reverse Total Gai Gate to S Gate to I Charact Turn-On Turn-On Turn-Off	pacitance Capacitance Transfer Capacitanc te Charge at 10V Source Gate Charge Drain "Miller" Charge eristics Delay Time Rise Time		$V_{DS} = V_{GS} = V_{DD} = V$	Hz 320V, I _D = 19A 10V 200V, I _D = 19A	(Note 4, 5)	-	255 20 32 10 13 31 70	340 29 40 - - 72 150	pF pF nC nC nC nC
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ Q_{g(tot)} \\ Q_{gs} \\ Q_{gd} \\ \end{array} \\ \begin{array}{c} \textbf{Switching} \\ t_{d(on)} \\ t_r \\ t_q \\ t_{d(off)} \\ t_f \\ \end{array} \\ \end{array}$	Input Ca Output C Reverse Total Gai Gate to S Gate to I Charact Turn-On Turn-On Turn-Off Turn-Off	pacitance Capacitance Transfer Capacitanc te Charge at 10V Source Gate Charge Drain "Miller" Charge eristics Delay Time Rise Time Delay Time		$V_{DS} = V_{GS} = V_{DD} = V$	Hz 320V, I _D = 19A 10V 200V, I _D = 19A		-	255 20 32 10 13 31 70 82	340 29 40 - - 72 150 174	pF pF nC nC nC nC
C_{iss} C_{oss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Drain-Sour	Input Ca Output C Reverse Total Gat Gate to S Gate to I Charact Turn-On Turn-Off Turn-Off	pacitance Capacitance Transfer Capacitanc te Charge at 10V Source Gate Charge Drain "Miller" Charge eristics Delay Time Rise Time Delay Time Fall Time		$V_{DS} = V_{GS} = V_{GS} = R_G = 2$	Hz 320V, I _D = 19A 10V 200V, I _D = 19A 5Ω		-	255 20 32 10 13 31 70 82	340 29 40 - - 72 150 174	pF pF nC nC nC nC
C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Soul	Input Ca Output C Reverse Total Gat Gate to S Gate to I Charact Turn-On Turn-Off Turn-Off rce Diod	pacitance Capacitance Transfer Capacitance te Charge at 10V Source Gate Charge Drain "Miller" Charge eristics Delay Time Rise Time Delay Time Fall Time e Characteristic	S Source Dio	$V_{DS} = V_{GS} = V_{GS} = R_{G} = 2$	Hz 320V, I _D = 19A 10V 200V, I _D = 19A 5Ω rd Current		-	255 20 32 10 13 31 70 82 49	340 29 40 - - 72 150 174 108	pF pF nC nC nC nC nS ns
C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Soul I _S I _{SM}	Input Ca Output C Reverse Total Gat Gate to S Gate to I Charact Turn-On Turn-Off Turn-Off Turn-Off Turn-Off Maximun Maximun	pacitance Capacitance Transfer Capacitance te Charge at 10V Source Gate Charge Drain "Miller" Charge eristics Delay Time Rise Time Delay Time Fall Time e Characteristic n Continuous Drain to	2S to Source Dio urce Diode F	$V_{DS} = V_{GS} = V_{GS} = R_{G} = 2$ de Forward Cu	Hz 320V, I _D = 19A 10V 200V, I _D = 19A 5Ω rd Current		-	255 20 32 10 13 31 70 82 49 -	340 29 40 - - 72 150 174 108	pF pF nC nC nC nC nS ns A
C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Soul	Input Ca Output C Reverse Total Gat Gate to S Gate to I Charact Turn-On Turn-Off Turn-Off Turn-Off Turn-Off Maximun Maximun Drain to S	pacitance Capacitance Transfer Capacitanc te Charge at 10V Source Gate Charge Drain "Miller" Charge eristics Delay Time Rise Time Delay Time Fall Time e Characteristic n Continuous Drain to So	2S to Source Dio urce Diode F	$V_{DS} = V_{GS} = V_{GS} = R_{G} = 2$ $V_{DD} = R_{G} = 2$ $V_{DD} = R_{G} = 2$ $V_{DD} = R_{G} = 2$	Hz $320V, I_D = 19A$ 10V $200V, I_D = 19A$ 5Ω rd Current urrent		- - - -	255 20 32 10 13 31 70 82 49 - -	340 29 40 - - 72 150 174 108 19 76	PF pF nC nC nC nS ns ns A A






FDP19N40 N-Channel MOSFET

FDP19N40 N-Channel MOSFET

SEMICONDUCTOR

DP19N40 N-Channel MOSF

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
AccuPower™	FRFET®	PowerXS™	the ®
AX-CAP™*	Global Power Resource SM	Programmable Active Droop™	puwer
BitSiC [®]	Green Bridge™	QFĔT [®]	franchise TinyBoost™
Build it Now™	Green FPS [™]	QS™	
CorePLUS™	Green FPS™ e-Series™	Quiet Series™	TinyBuck™
CorePOWER™	Gmax™	RapidConfigure™	TinyCalc™ TinyLasia®
CROSSVOLT™	GTO™	ТМ	TinyLogic®
CTL™	IntelliMAX™		TINYOPTO™ TINYOPTO™
Current Transfer Logic™	ISOPLANAR™	Saving our world, 1mW/W/kW at a time™	TinyPower™ Tiny DM/ATM
	Marking Small Speakers Sound Louder	SignalWise™	TinyPWM™ TinyA/ingTM
Dual Cool™	and Better™	SmartMax™	TinyWire™ Trans CiO®
EcoSPARK [®]	MegaBuck™	SMART START™	TranSiC [®]
EfficentMax™	MICROCOUPLER™	Solutions for Your Success™	TriFault Detect™
ESBC™	MicroFET™	SPM®	TRUECURRENT [®] * µSerDes™
R	MicroPak™	STEALTH™	µSerbes ¹
+ "	MicroPak2 [™]	SuperFET [®]	SerDes
Fairchild®	MillerDrive™	SuperSOT™-3	
Fairchild Semiconductor [®]	MotionMax™	SuperSOT™-6	UHC®
FACT Quiet Series™	Motion-SPM [™]	SuperSOT™-8	Ultra FRFET™
FACT®	mWSaver™	SupreMOS®	UniFET™
FAST [®]	OptoHiT™	SyncFET™	VCX™
FastvCore™	OPTOLOGIC®	Sync-Lock™	VisualMax™
FETBench™	OPTOPLANAR®	SYSTEM ®*	VoltagePlus™
FlashWriter [®] *	CO _®	GENERAL	XS™
FPS™			
	Operation wood woden lineare hy Establi		

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev